import os import argparse import wandb from config import Config from core.data import * from core.segmentator import CellSegmentator def main(): parser = argparse.ArgumentParser( description="Train or predict cell segmentator with specified config file." ) parser.add_argument( '-c', '--config', type=str, default='config/templates/train/ModelV_BCE_MSE_Loss_AdamW_CosineAnnealing.json', help='Path to the JSON config file' ) parser.add_argument( '-m', '--mode', choices=['train', 'test', 'predict'], default='train', help='Run mode: train, test or predict' ) parser.add_argument( '-s', '--save-masks', action='store_true', default=True, help='If set to False, do not save predicted masks; by default, saving is enabled' ) parser.add_argument( '--only-masks', action='store_true', default=False, help=('If set and save-masks set, save only the raw predicted' ' masks without additional visualizations or metrics') ) args = parser.parse_args() mode = args.mode config_path = args.config config = Config.load_json(config_path) if mode == 'train' and not config.dataset_config.is_training: raise ValueError( f"Config is not set for training (is_training=False), but mode 'train' was requested." ) if mode in ('test', 'predict') and config.dataset_config.is_training: raise ValueError( f"Config is set for training (is_training=True), but mode '{mode}' was requested." ) if config.wandb_config.use_wandb: # Initialize W&B wandb.init(config=config.asdict(), **config.wandb_config.asdict()) # How many batches to wait before logging training status wandb.config.log_interval = 10 segmentator = CellSegmentator(config) segmentator.create_dataloaders( train_transforms=get_train_transforms() if mode == "train" else None, valid_transforms=get_valid_transforms() if mode == "train" else None, test_transforms=get_test_transforms() if mode in ("train", "test") else None, predict_transforms=get_predict_transforms() if mode == "predict" else None ) # Watch parameters & gradients of model if config.wandb_config.use_wandb: wandb.watch(segmentator._model, log="all", log_graph=True) try: segmentator.run(save_results=args.save_masks, only_masks=args.only_masks) except Exception: raise finally: if config.dataset_config.is_training: # Prepare saving path weights_dir = ( wandb.run.dir if config.wandb_config.use_wandb else "weights" # type: ignore ) saving_path = os.path.join( weights_dir, os.path.basename(config.dataset_config.common.predictions_dir) + '.pth' ) segmentator.save_checkpoint(saving_path) if config.wandb_config.use_wandb: wandb.save(saving_path) if __name__ == "__main__": main()