from typing import Any, Dict from pydantic import BaseModel, ConfigDict from torch import optim from torch.optim.lr_scheduler import CosineAnnealingLR from .base import BaseScheduler class CosineAnnealingLRParams(BaseModel): """Configuration for `torch.optim.lr_scheduler.CosineAnnealingLR`.""" model_config = ConfigDict(frozen=True) T_max: int = 100 # Maximum number of iterations eta_min: float = 0.0 # Minimum learning rate last_epoch: int = -1 def asdict(self) -> Dict[str, Any]: """Returns a dictionary of valid parameters for `torch.optim.lr_scheduler.CosineAnnealingLR`.""" return self.model_dump() class CosineAnnealingLRScheduler(BaseScheduler): """ Wrapper around torch.optim.lr_scheduler.CosineAnnealingLR. """ def __init__(self, optimizer: optim.Optimizer, params: CosineAnnealingLRParams): """ Args: optimizer (Optimizer): Wrapped optimizer. params (CosineAnnealingLRParams): Scheduler parameters. """ super().__init__(optimizer, params) self.scheduler = CosineAnnealingLR(optimizer, **params.asdict())