from typing import Any, Dict from pydantic import BaseModel, ConfigDict from torch import optim from torch.optim.lr_scheduler import ExponentialLR from .base import BaseScheduler class ExponentialLRParams(BaseModel): """Configuration for `torch.optim.lr_scheduler.ExponentialLR`.""" model_config = ConfigDict(frozen=True) gamma: float = 0.95 # Multiplicative factor of learning rate decay last_epoch: int = -1 def asdict(self) -> Dict[str, Any]: """Returns a dictionary of valid parameters for `torch.optim.lr_scheduler.ExponentialLR`.""" return self.model_dump() class ExponentialLRScheduler(BaseScheduler): """ Wrapper around torch.optim.lr_scheduler.ExponentialLR. """ def __init__(self, optimizer: optim.Optimizer, params: ExponentialLRParams): """ Args: optimizer (Optimizer): Wrapped optimizer. params (ExponentialLRParams): Scheduler parameters. """ super().__init__(optimizer, params) self.scheduler = ExponentialLR(optimizer, **params.asdict())