from typing import Any, Dict, Tuple from pydantic import BaseModel, ConfigDict from torch import optim from torch.optim.lr_scheduler import MultiStepLR from .base import BaseScheduler class MultiStepLRParams(BaseModel): """Configuration for `torch.optim.lr_scheduler.MultiStepLR`.""" model_config = ConfigDict(frozen=True) milestones: Tuple[int, ...] = (30, 80) # List of epoch indices for LR decay gamma: float = 0.1 # Multiplicative factor of learning rate decay last_epoch: int = -1 def asdict(self) -> Dict[str, Any]: """Returns a dictionary of valid parameters for `torch.optim.lr_scheduler.MultiStepLR`.""" return self.model_dump() class MultiStepLRScheduler(BaseScheduler): """ Wrapper around torch.optim.lr_scheduler.MultiStepLR. """ def __init__(self, optimizer: optim.Optimizer, params: MultiStepLRParams): """ Args: optimizer (Optimizer): Wrapped optimizer. params (MultiStepLRParams): Scheduler parameters. """ super().__init__(optimizer, params) self.scheduler = MultiStepLR(optimizer, **params.asdict())