import torch from torch import optim from typing import Any, Iterable from pydantic import BaseModel, ConfigDict from .base import BaseOptimizer class AdamParams(BaseModel): """Configuration for `torch.optim.Adam` optimizer.""" model_config = ConfigDict(frozen=True) lr: float = 1e-3 # Learning rate betas: tuple[float, float] = (0.9, 0.999) # Coefficients for computing running averages eps: float = 1e-8 # Term added to denominator for numerical stability weight_decay: float = 0.0 # L2 regularization amsgrad: bool = False # Whether to use the AMSGrad variant def asdict(self) -> dict[str, Any]: """Returns a dictionary of valid parameters for `torch.optim.Adam`.""" return self.model_dump() class AdamOptimizer(BaseOptimizer): """ Wrapper around torch.optim.Adam. """ def __init__(self, model_params: Iterable[torch.nn.Parameter], optim_params: AdamParams) -> None: """ Initializes the Adam optimizer with given parameters. Args: model_params (Iterable[Parameter]): Parameters to optimize. optim_params (AdamParams): Optimizer parameters. """ super().__init__(model_params, optim_params) self.optim = optim.Adam(model_params, **optim_params.asdict())