from .base import BaseLoss import torch from typing import Any, Literal from pydantic import BaseModel, ConfigDict from monai.metrics.cumulative_average import CumulativeAverage class CrossEntropyLossParams(BaseModel): """ Class for handling parameters for `nn.CrossEntropyLoss`. """ model_config = ConfigDict(frozen=True) weight: list[int | float] | None = None ignore_index: int = -100 reduction: Literal["none", "mean", "sum"] = "mean" label_smoothing: float = 0.0 def asdict(self) -> dict[str, Any]: """ Returns a dictionary of valid parameters for `nn.CrossEntropyLoss`. Returns: dict(str, Any): Dictionary of parameters for nn.CrossEntropyLoss. """ loss_kwargs = self.model_dump() weight = loss_kwargs.get("weight") if weight is not None: loss_kwargs["weight"] = torch.Tensor(weight) return {k: v for k, v in loss_kwargs.items() if v is not None} # Remove None values class CrossEntropyLoss(BaseLoss): """ Custom loss function wrapper for `nn.CrossEntropyLoss` with tracking of loss metrics. """ def __init__(self, params: CrossEntropyLossParams | None = None) -> None: """ Initializes the loss function with optional CrossEntropyLoss parameters. Args: params (CrossEntropyLossParams | None): Parameters for nn.CrossEntropyLoss (default: None). """ super().__init__(params=params) _ce_params = params.asdict() if params is not None else {} # Initialize loss functions with user-provided parameters or PyTorch defaults self.ce_loss = torch.nn.CrossEntropyLoss(**_ce_params) # Using CumulativeAverage from MONAI to track loss metrics self.loss_ce_metric = CumulativeAverage() def forward(self, outputs: torch.Tensor, target: torch.Tensor) -> torch.Tensor: """ Computes the loss between true labels and prediction outputs. Args: outputs (torch.Tensor): Model predictions of shape (batch_size, channels, H, W). target (torch.Tensor): Ground truth labels of shape (batch_size, H, W). Returns: torch.Tensor: The total loss value. """ # Ensure target is on the same device as outputs assert ( target.device == outputs.device ), ( "Target tensor must be moved to the same device as outputs " "before calling forward()." ) loss = self.ce_loss(outputs, target) self.loss_ce_metric.append(loss.item()) return loss def get_loss_metrics(self) -> dict[str, float]: """ Retrieves the tracked loss metrics. Returns: dict(str, float): A dictionary containing the average CrossEntropy loss. """ return { "loss": round(self.loss_ce_metric.aggregate().item(), 4), } def reset_metrics(self) -> None: """Resets the stored loss metrics.""" self.loss_ce_metric.reset()