from .base import BaseScheduler from typing import Any from torch import optim from torch.optim.lr_scheduler import StepLR from pydantic import BaseModel, ConfigDict class StepLRParams(BaseModel): """Configuration for `torch.optim.lr_scheduler.StepLR`.""" model_config = ConfigDict(frozen=True) step_size: int = 30 # Period of learning rate decay gamma: float = 0.1 # Multiplicative factor of learning rate decay last_epoch: int = -1 def asdict(self) -> dict[str, Any]: """Returns a dictionary of valid parameters for `torch.optim.lr_scheduler.StepLR`.""" return self.model_dump() class StepLRScheduler(BaseScheduler): """ Wrapper around torch.optim.lr_scheduler.StepLR. """ def __init__(self, optimizer: optim.Optimizer, params: StepLRParams) -> None: """ Args: optimizer (Optimizer): Wrapped optimizer. params (StepLRParams): Scheduler parameters. """ super().__init__(optimizer, params) self.scheduler = StepLR(optimizer, **params.asdict())