from typing import Any, Dict from pydantic import BaseModel, ConfigDict class ExponentialLRParams(BaseModel): """Configuration for `torch.optim.lr_scheduler.ExponentialLR`.""" model_config = ConfigDict(frozen=True) gamma: float = 0.95 # Multiplicative factor of learning rate decay def asdict(self) -> Dict[str, Any]: """Returns a dictionary of valid parameters for `torch.optim.lr_scheduler.ExponentialLR`.""" return self.model_dump()