You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
laynholt 7cbac2aba1
doc: updated ReadMe with few variables
20 hours ago
config feat: The flag for removing boundary objects was added to the config 2 days ago
core feat: The flag for removing boundary objects was added to the config 2 days ago
.gitignore Update package versions and include uv installation support 2 months ago
.python-version Update package versions and include uv installation support 2 months ago
README.md doc: updated ReadMe with few variables 20 hours ago
generate_config.py refactor: migrate all type annotations from Python 3.9 to 3.10 syntax 1 month ago
main.py refactor: migrate all type annotations from Python 3.9 to 3.10 syntax 1 month ago
pyproject.toml Update package versions and include uv installation support 2 months ago
uv.lock add roi_size parameter to training 2 months ago

README.md

Cell Segmentator


Overview

This repository provides two main scripts to configure and run a cell segmentation workflow:

  • generate_config.py: Interactive script to create JSON configuration files for training or prediction.
  • main.py: Entry point to train, test, or predict using the generated configuration.

Installation

  1. Install uv: Follow the official guide at https://docs.astral.sh/uv/

    Linux / macOS

    curl -LsSf https://astral.sh/uv/install.sh | sh
    

    Windows

    powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
    
    uv --version
    
  2. Clone the repository:

    git clone https://git.ai.infran.ru/ilyukhin/model-v
    cd model-v
    
  3. Install dependencies:

    uv sync
    

Dataset Structure

Your data directory must follow this hierarchy:

path_to_data_folder/
├── images/        # Input images (any supported format)
│   ├── img1.tif
│   ├── img2.png
│   └── …
└── masks/         # Ground-truth instance masks (any supported format)
    ├── mask1.tif
    ├── mask2.jpg
    └── …

If your dataset contains multiple classes (e.g., class A and B) and you prefer not to duplicate images, you can organize masks into class-specific subdirectories:

path_to_data_folder/
├── images/        # Input images (any supported format)
│   └── img1.bmp
└── masks/
    ├── A/         # Masks for class A (any supported format)
    │   ├── img1_mask.png
    │   └── …
    └── B/         # Masks for class B (any supported format)
        ├── img1_mask.jpeg
        └── …

In this case, set the masks_subdir field in your dataset configuration to the name of the mask subdirectory (e.g., "A" or "B").

Supported file formats: Image and mask files can have any of these extensions: tif, tiff, png, jpg, bmp, jpeg.

Mask format: Instance masks should be provided for multi-label segmentation with channel-last ordering, i.e., each mask array must have shape (H, W, C).


generate_config.py

This script guides you through creating a JSON configuration for either training or prediction.

Usage

python generate_config.py
  1. Training mode? Select y or n.

  2. Model selection: Choose from available models in the registry.

  3. (If training)

    • Criterion selection
    • Optimizer selection
    • Scheduler selection
  4. Configuration is saved under config/templates/train/ or config/templates/predict/ with a unique filename.

Generated config includes sections:

  • model: Model component and parameters
  • dataset_config: Paths, training flag, and mask subdirectory (if any)
  • wandb_config: Weights & Biases integration settings
  • (If training) criterion, optimizer, scheduler

main.py

Entrypoint to run training, testing, or prediction using a config file.

Command-line Arguments

python main.py [-c CONFIG] [-m {train,test,predict}] [--no-save-masks] [--only-masks]
  • -c, --config : Path to JSON config file (default: config/templates/train/...json).
  • -m, --mode : train, test, or predict (default: train).
  • --no-save-masks : Disable saving predicted masks.
  • --only-masks : Save only raw predicted masks (no visual overlays). This flag depends on --no-save-masks.

Workflow

  1. Load config and verify mode consistency.
  2. Initialize Weights & Biases if enabled.
  3. Create CellSegmentator and dataloaders with appropriate transforms.
  4. Print dataset info for the first batch.
  5. Run training or inference (.run()).
  6. Save model checkpoint and upload to W&B if in training mode.

Configurable Parameters

A brief overview of the key parameters you can adjust in your JSON config:

Common Settings (common)

  • seed (int): Random seed for data splitting and reproducibility (default: 0).
  • device (str): Compute device to use, e.g., 'cuda:0' or 'cpu' (default: 'cuda:0').
  • use_amp (bool): Enable Automatic Mixed Precision for faster training (default: false).
  • roi_size (int): Defines the size of the square Region of Interest (ROI) used for cropping during training. This same size is also applied for the sliding window inference during validation and testing (default: 512).
  • remove_boundary_objects (bool): Flag to remove boundary objects when testing (default: True).
  • masks_subdir (str): Name of subdirectory under masks/ containing the instance masks (default: "").
  • predictions_dir (str): Output directory for saving predicted masks (default: ".").
  • pretrained_weights (str): Path to pretrained model weights (default: "").

Training Settings (training)

  • is_split (bool): Whether your data is already split (true) or needs splitting (false, default).
  • split / pre_split: Directories for data when pre-split or unsplit.
  • train_size, valid_size, test_size (int/float): Size or ratio of your splits (e.g., 0.7, 0.1, 0.2).
  • batch_size (int): Number of samples per training batch (default: 1).
  • num_epochs (int): Total training epochs (default: 100).
  • val_freq (int): Frequency (in epochs) to run validation (default: 1).

Testing Settings (testing)

  • test_dir (str): Directory containing test data (default: ".").
  • test_size (int/float): Portion or count of data for testing (default: 1.0).
  • shuffle (bool): Shuffle test data before evaluation (default: true).

Batch size note: Validation, testing, and prediction runs always use a batch size of 1, regardless of the batch_size setting in the training configuration.


Examples

Generate a training config

python generate_config.py
# Follow prompts to select model, criterion, optimizer, scheduler
# Output saved to config/templates/train/YourConfig.json

Train a model

python main.py -c config/templates/train/YourConfig.json -m train

Predict on new data

python main.py -c config/templates/predict/YourConfig.json -m predict

Acknowledgments

This project was developed building upon the following open-source repositories: