You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
38 lines
1.3 KiB
38 lines
1.3 KiB
import torch
|
|
from torch import optim
|
|
from typing import Any, Dict, Iterable, Optional
|
|
from pydantic import BaseModel, ConfigDict
|
|
|
|
from .base import BaseOptimizer
|
|
|
|
|
|
class SGDParams(BaseModel):
|
|
"""Configuration for `torch.optim.SGD` optimizer."""
|
|
model_config = ConfigDict(frozen=True)
|
|
|
|
lr: float = 1e-3 # Learning rate
|
|
momentum: float = 0.0 # Momentum factor
|
|
dampening: float = 0.0 # Dampening for momentum
|
|
weight_decay: float = 0.0 # L2 penalty
|
|
nesterov: bool = False # Enables Nesterov momentum
|
|
|
|
def asdict(self) -> Dict[str, Any]:
|
|
"""Returns a dictionary of valid parameters for `torch.optim.SGD`."""
|
|
return self.model_dump()
|
|
|
|
|
|
class SGDOptimizer(BaseOptimizer):
|
|
"""
|
|
Wrapper around torch.optim.SGD.
|
|
"""
|
|
|
|
def __init__(self, model_params: Iterable[torch.nn.Parameter], optim_params: SGDParams):
|
|
"""
|
|
Initializes the SGD optimizer with given parameters.
|
|
|
|
Args:
|
|
model_params (Iterable[Parameter]): Parameters to optimize.
|
|
optim_params (SGDParams): Optimizer parameters.
|
|
"""
|
|
super().__init__(model_params, optim_params)
|
|
self.optim = optim.SGD(model_params, **optim_params.asdict()) |