You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

109 lines
3.3 KiB

import os
import sys
import argparse
import wandb
from config import Config
from core.data import (
get_train_transforms,
get_valid_transforms,
get_test_transforms,
get_predict_transforms
)
from core.segmentator import CellSegmentator
def main() -> None:
parser = argparse.ArgumentParser(
description="Train or predict cell segmentator with specified config file."
)
parser.add_argument(
'-c', '--config',
type=str,
help='Path to the JSON config file'
)
parser.add_argument(
'-m', '--mode',
choices=['train', 'test', 'predict'],
default='train',
help='Run mode: train, test or predict'
)
parser.add_argument(
'--no-save-masks',
action='store_false',
dest='save_masks',
help='If set, do NOT save predicted masks (saving is enabled by default)'
)
parser.add_argument(
'--only-masks',
action='store_true',
help=('If set and save-masks set, save only the raw predicted'
' masks without additional visualizations')
)
if len(sys.argv) == 1:
parser.print_help()
sys.exit(0)
args = parser.parse_args()
mode = args.mode
config_path = args.config
config = Config.load_json(config_path)
if mode == 'train' and not config.dataset_config.is_training:
raise ValueError(
"Config is not set for training (is_training=False), but mode 'train' was requested."
)
if mode in ('test', 'predict') and config.dataset_config.is_training:
raise ValueError(
f"Config is set for training (is_training=True), but mode '{mode}' was requested."
)
if config.wandb_config.use_wandb:
# Initialize W&B
wandb.init(config=config.asdict(), **config.wandb_config.asdict())
# How many batches to wait before logging training status
wandb.config.log_interval = 10
segmentator = CellSegmentator(config)
segmentator.create_dataloaders(
train_transforms=get_train_transforms(
roi_size=config.dataset_config.common.roi_size) if mode == "train" else None,
valid_transforms=get_valid_transforms() if mode == "train" else None,
test_transforms=get_test_transforms() if mode in ("train", "test") else None,
predict_transforms=get_predict_transforms() if mode == "predict" else None
)
segmentator.print_data_info(
loader_type=mode, index=0
)
# Watch parameters & gradients of model
if config.wandb_config.use_wandb:
wandb.watch(segmentator._model, log="all", log_graph=True)
try:
segmentator.run(save_results=args.save_masks, only_masks=args.only_masks)
except Exception:
raise
finally:
if config.dataset_config.is_training:
# Prepare saving path
weights_dir = (
wandb.run.dir if config.wandb_config.use_wandb else "weights" # type: ignore
)
saving_path = os.path.join(
weights_dir,
os.path.basename(config.dataset_config.common.predictions_dir) + '.pth'
)
segmentator.save_checkpoint(saving_path)
if config.wandb_config.use_wandb:
wandb.save(saving_path)
if __name__ == "__main__":
main()