You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							34 lines
						
					
					
						
							1.1 KiB
						
					
					
				
			
		
		
	
	
							34 lines
						
					
					
						
							1.1 KiB
						
					
					
				from .base import BaseScheduler
 | 
						|
 | 
						|
from typing import Any
 | 
						|
from torch import optim
 | 
						|
from torch.optim.lr_scheduler import MultiStepLR
 | 
						|
from pydantic import BaseModel, ConfigDict
 | 
						|
 | 
						|
 | 
						|
class MultiStepLRParams(BaseModel):
 | 
						|
    """Configuration for `torch.optim.lr_scheduler.MultiStepLR`."""
 | 
						|
    model_config = ConfigDict(frozen=True)
 | 
						|
 | 
						|
    milestones: tuple[int, ...] = (30, 80)   # List of epoch indices for LR decay
 | 
						|
    gamma: float = 0.1                     # Multiplicative factor of learning rate decay
 | 
						|
    last_epoch: int = -1
 | 
						|
 | 
						|
    def asdict(self) -> dict[str, Any]:
 | 
						|
        """Returns a dictionary of valid parameters for `torch.optim.lr_scheduler.MultiStepLR`."""
 | 
						|
        return self.model_dump()
 | 
						|
 | 
						|
 | 
						|
class MultiStepLRScheduler(BaseScheduler):
 | 
						|
    """
 | 
						|
    Wrapper around torch.optim.lr_scheduler.MultiStepLR.
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self, optimizer: optim.Optimizer, params: MultiStepLRParams) -> None:
 | 
						|
        """
 | 
						|
        Args:
 | 
						|
            optimizer (Optimizer): Wrapped optimizer.
 | 
						|
            params (MultiStepLRParams): Scheduler parameters.
 | 
						|
        """
 | 
						|
        super().__init__(optimizer, params)
 | 
						|
        self.scheduler = MultiStepLR(optimizer, **params.asdict()) |