|
|
|
|
@ -147,7 +147,6 @@ class CellSegmentator:
|
|
|
|
|
else int(test_number_of_images * self._dataset_setup.training.test_offset)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
shuffle = self._dataset_setup.training.shuffle
|
|
|
|
|
else:
|
|
|
|
|
# Same validation for split mode with full data directory
|
|
|
|
|
if (
|
|
|
|
|
@ -192,8 +191,6 @@ class CellSegmentator:
|
|
|
|
|
else int(number_of_images * self._dataset_setup.training.test_offset)
|
|
|
|
|
) + valid_offset + valid_size
|
|
|
|
|
|
|
|
|
|
shuffle = self._dataset_setup.training.shuffle
|
|
|
|
|
|
|
|
|
|
# Train dataloader
|
|
|
|
|
train_dataset = self.__get_dataset(
|
|
|
|
|
images_dir=os.path.join(train_dir, 'images'),
|
|
|
|
|
@ -201,7 +198,7 @@ class CellSegmentator:
|
|
|
|
|
transforms=train_transforms, # type: ignore
|
|
|
|
|
size=self._dataset_setup.training.train_size,
|
|
|
|
|
offset=train_offset,
|
|
|
|
|
shuffle=shuffle
|
|
|
|
|
shuffle=self._dataset_setup.training.shuffle
|
|
|
|
|
)
|
|
|
|
|
self._train_dataloader = DataLoader(train_dataset, batch_size=self._dataset_setup.training.batch_size, shuffle=True)
|
|
|
|
|
logger.info(f"Loaded training dataset with {len(train_dataset)} samples.")
|
|
|
|
|
@ -216,7 +213,7 @@ class CellSegmentator:
|
|
|
|
|
transforms=valid_transforms,
|
|
|
|
|
size=self._dataset_setup.training.valid_size,
|
|
|
|
|
offset=valid_offset,
|
|
|
|
|
shuffle=shuffle
|
|
|
|
|
shuffle=self._dataset_setup.training.shuffle
|
|
|
|
|
)
|
|
|
|
|
self._valid_dataloader = DataLoader(valid_dataset, batch_size=1, shuffle=False)
|
|
|
|
|
logger.info(f"Loaded validation dataset with {len(valid_dataset)} samples.")
|
|
|
|
|
@ -231,7 +228,7 @@ class CellSegmentator:
|
|
|
|
|
transforms=test_transforms,
|
|
|
|
|
size=self._dataset_setup.training.test_size,
|
|
|
|
|
offset=test_offset,
|
|
|
|
|
shuffle=shuffle
|
|
|
|
|
shuffle=self._dataset_setup.training.shuffle
|
|
|
|
|
)
|
|
|
|
|
self._test_dataloader = DataLoader(test_dataset, batch_size=1, shuffle=False)
|
|
|
|
|
logger.info(f"Loaded test dataset with {len(test_dataset)} samples.")
|
|
|
|
|
@ -246,7 +243,7 @@ class CellSegmentator:
|
|
|
|
|
transforms=predict_transforms,
|
|
|
|
|
size=self._dataset_setup.training.test_size,
|
|
|
|
|
offset=test_offset,
|
|
|
|
|
shuffle=shuffle
|
|
|
|
|
shuffle=self._dataset_setup.training.shuffle
|
|
|
|
|
)
|
|
|
|
|
self._predict_dataloader = DataLoader(predict_dataset, batch_size=1, shuffle=False)
|
|
|
|
|
logger.info(f"Loaded prediction dataset with {len(predict_dataset)} samples.")
|
|
|
|
|
@ -258,9 +255,9 @@ class CellSegmentator:
|
|
|
|
|
|
|
|
|
|
number_of_images = len(os.listdir(test_images))
|
|
|
|
|
test_offset = (
|
|
|
|
|
self._dataset_setup.training.test_offset
|
|
|
|
|
if isinstance(self._dataset_setup.training.test_offset, int)
|
|
|
|
|
else int(number_of_images * self._dataset_setup.training.test_offset)
|
|
|
|
|
self._dataset_setup.testing.test_offset
|
|
|
|
|
if isinstance(self._dataset_setup.testing.test_offset, int)
|
|
|
|
|
else int(number_of_images * self._dataset_setup.testing.test_offset)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if test_transforms is not None:
|
|
|
|
|
|