You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

36 lines
1.1 KiB

from typing import Any, Dict
from pydantic import BaseModel, ConfigDict
from torch import optim
from torch.optim.lr_scheduler import CosineAnnealingLR
from .base import BaseScheduler
class CosineAnnealingLRParams(BaseModel):
"""Configuration for `torch.optim.lr_scheduler.CosineAnnealingLR`."""
model_config = ConfigDict(frozen=True)
T_max: int = 100 # Maximum number of iterations
eta_min: float = 0.0 # Minimum learning rate
last_epoch: int = -1
def asdict(self) -> Dict[str, Any]:
"""Returns a dictionary of valid parameters for `torch.optim.lr_scheduler.CosineAnnealingLR`."""
return self.model_dump()
class CosineAnnealingLRScheduler(BaseScheduler):
"""
Wrapper around torch.optim.lr_scheduler.CosineAnnealingLR.
"""
def __init__(self, optimizer: optim.Optimizer, params: CosineAnnealingLRParams):
"""
Args:
optimizer (Optimizer): Wrapped optimizer.
params (CosineAnnealingLRParams): Scheduler parameters.
"""
super().__init__(optimizer, params)
self.scheduler = CosineAnnealingLR(optimizer, **params.asdict())