You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
34 lines
1.1 KiB
34 lines
1.1 KiB
from typing import Any, Dict, Tuple
|
|
from pydantic import BaseModel, ConfigDict
|
|
from torch import optim
|
|
from torch.optim.lr_scheduler import MultiStepLR
|
|
|
|
from .base import BaseScheduler
|
|
|
|
|
|
class MultiStepLRParams(BaseModel):
|
|
"""Configuration for `torch.optim.lr_scheduler.MultiStepLR`."""
|
|
model_config = ConfigDict(frozen=True)
|
|
|
|
milestones: Tuple[int, ...] = (30, 80) # List of epoch indices for LR decay
|
|
gamma: float = 0.1 # Multiplicative factor of learning rate decay
|
|
last_epoch: int = -1
|
|
|
|
def asdict(self) -> Dict[str, Any]:
|
|
"""Returns a dictionary of valid parameters for `torch.optim.lr_scheduler.MultiStepLR`."""
|
|
return self.model_dump()
|
|
|
|
|
|
class MultiStepLRScheduler(BaseScheduler):
|
|
"""
|
|
Wrapper around torch.optim.lr_scheduler.MultiStepLR.
|
|
"""
|
|
|
|
def __init__(self, optimizer: optim.Optimizer, params: MultiStepLRParams):
|
|
"""
|
|
Args:
|
|
optimizer (Optimizer): Wrapped optimizer.
|
|
params (MultiStepLRParams): Scheduler parameters.
|
|
"""
|
|
super().__init__(optimizer, params)
|
|
self.scheduler = MultiStepLR(optimizer, **params.asdict()) |